
N90-20656

THE REAL TIME DISPLAY BUILDER
(RTDB)

Erick D. Kindred and Samuel A. Bailey, Jr.

DUAL & Associates, Inc.

1300 Hercules, Suite 208

Houston, TX 77058

(713) 486-1984

ABSTRACT

The Real Time Display Builder

(RTDB) is a prototype interactive

graphics tool that builds logic-

driven displays. These displays

reflect current system status,

implement fault detection

algorithms in real time, and

incorporate the operational

knowledge of experienced flight

controllers. RTDB utilizes an

object-oriented approach that

integrates the display symbols

with the underlying operational

logic. This approach allows the

user to specify the screen layout

and the driving logic as the

display is being built. RTDB is

being developed under UNIX in C

utilizing the MASSCOMP graphics

environment with appropriate

functional separation to ease

portability to other graphics

environments. RTDB grew from the

need to develop customized real-

time data-driven Space Shuttle

systems displays. One display,

using initial functionality of the

tool, was operational during the

orbit phase of STS-26 Discovery.

RTDB is being used to produce

subsequent displays for the Real

Time Data System project currently

under development within the

Mission Operations Directorate at

NASA/JSC. This paper discusses

the features of the tool, its

current state of development, and

its applications.

INTRODUCTION

The Real Time Display Builder

(RTDB) is the result of the

effort to provide timely display

building support to the Real Time

Data System (RTDS). RTDS is a

prototype project to integrate

commercial off-the-shelf tele-

metry equipment with mini-

computer workstations to monitor

shuttle systems telemetry data in

real time. One of the initial

goals of RTDS was to develop a

display of the hydraulics system

for the Mechanical, Maintenance,

and Crew Systems (MMACS) flight

controllers for operation during

STS-26 Discovery. With three

months to define the activity,

choose the target MMACS system,

layout the display, create the

symbols, define and program an

operating environment, build the

databases, build the screen, and

test the system, there was a need

for time-saving tools.

To expedite development, the

display operating environment and

the drawing file format were

developed concurrently. The

drawing file format was initially

built by hand, but was designed

with a graphics oriented builder

in mind. After the initial

display was built and the MMACS

flight controllers began their

review, it was obvious that the

most time-consuming effort would

be the fine-tuning of symbol

positions, colors, and sizes. At

this point, initial functionality

of what was to become RTDB was

coded. The initial functions

addressed the high priority items

of position, color, size and

rotation. These functions

provided the capability to

quickly prepare the display for

flight monitoring.

As RTDS support of other systems

PRECEDING PAGE BLAI';X HOT F;LMED

33



disciplines has expanded,

functionality has been added to

accommodate the required uses.

RTDB has been used to build a

graphical representation of the

External Tank Ullage Pressure

System for the Booster flight

controllers. The display was used

to test the ullage pressure fault

detection algorithm. Also, RTDB

has been used to build two other

MMACS displays (Brakes/Tires and

Elevons), modify the Hydraulics

display, and build three new

Integrated Communications Officer

(INCO) displays operating with a

new Real Time Interactive Display

Environment (RTIDE) file format.

The RTIDE file format was

developed to provide specific

functionality for the INCO

discipline. All of these new

developments were operational

during STS-29 Discovery.

APPROACH

RTDB development was conceived as

a phased introduction of features.

Initial functionality was designed

and implemented to satisfy initial

project requirements, but were

integrated into an environment

that facilitated the introduction

of new features and the enhance-

ment of old. The development

required a highly structured and

modularized design with well-

defined module interfaces, yet

flexible data structures.

The data structures that described

objects had to be flexible to

accommodate the variety of

attributes that determined object

behavior. Presently, there are

over 60 MMACS and RTIDE objects

supported by RTDB. To maintain

modularity and flexibility, the

object attributes are processed

internal to the object function.

This relegates uniqueness to the

object's code and independence

from other parts of the system.

An overview of RTDB functional

modularity is presented in Figure

i. The major levels are: the

User Interface, the Menus, the

Processes, the Object Libraries,

the Translator, and the Graphics

Libraries. The structure is top-

down with higher levels deriving

functionality from lower levels.

The User Interface defines the

user's operating environment.

The primary interface to RTDB is

through a mouse and minimal

keyboard data entry. The mouse

determines functionality through

menu selection.

The Menus define command

selection and execution. They act

to interpret mouse manipulations

and to provide the inputs to

command processing.

The Processes direct command

execution. The appropriate code

is executed as defined by the

command string or object record

passed from the Menus. This

level acts as the link between

desired command behavior and the

active elements that perform the

command. The command behavior is

stored as the object attributes;

the active elements are executing

processes of object instances;

and object instances are the

definitions of object behavior.

This method of object selection,

execution, and definition

provides the separation necessary

to maintain a high degree of

modularity.

The Object Libraries consist of

the file formats, object

attributes, and process defini-

tions. These represent the

object-oriented nature of RTDB's

operation. The libraries can be

thought of as a pool of commands

and objects upon which RTDB may

call to perform various opera-

tions. This is where new

functionality will be added. The

higher levels will accommodate

any additions.

The Translator is a proposed set

of macros, functions, and

makefile strategies that will

facilitate porting RTDB to other

34



graphics environments (e.g. X-
Windows, IBM PC, Macintosh, MS-
Windows, etc.). This level is
still in the conceptual stage.
It will consist of macrodefini-
tions and function calls that map
the various graphics primitives
into a consistent set of function

names and argument lists. The

makefile strategies will build an

appropriate run-time module for

the target system configuration.

With a proposed conversion of RTDS

to the X-Windows environment, this

level will become a necessity.

The Graphics Libraries are a

proposed set of graphics environ-

ments that will be supported.

Currently the MASSCOMP Graphics

is the only supported environment.

Conversions to other environments

will allow more people and

machines to participate in the

development process.

FUNCTIONS

RTDB is a mouse and keyboard

operated, menu-driven, interac-

tive, graphics application

development tool that builds

displays that operate under the

RTDS environment. The best way to

discuss its functionality is to

trace through the menu hierarchy.

Figure 2 depicts the menu

hierarchy. It shows current

functionality, current development

(+), and proposed development (*).

The Main Menu provides the user

access to subsequent functions.

A menu item must be selected to

transfer control to another

functional mode.

FILE allows the user to retrieve

and store drawing files. Drawing

files contain the symbol records

that define a display. A proposed

feature is to retrieve and display

scanned images. These images will

act as backdrops for displays or

become mouse sensitive with the

placement of additional mouse

sensitive regions.

COLOR allows the user to select a

particular color from a color

map, define a new color map, or

select from a pre-defined set of

color maps.

EDIT allows the user to modify

any object attribute, display

invisible objects or symbols, and

to undo a previous change.

ADD allows the user to add a new

object to a display. Available

objects are displayed in a pop-up

window. The object is selected

and placed with the mouse.

Multiple objects may be selected

and placed while in this mode.

COPY allows the user to duplicate

any visible object. After the

initial object selection,

subsequent left button clicks

will place multiple copies. This

mode must be exited and reentered

to select a new object.

DELETE allows the user to remove

an object from the display.

Multiple objects may be deleted
while in this mode.

MOVE allows the user to reposi-

tion any visible object. The

object will be repositioned with

subsequent left mouse button

clicks.

EXIT allows the user to exit the

RTDB environment. The user may

elect to exit with a save or a no

save of the current display

buffer contents.

MOVE BEHIND allows the user to

reposition an object in the

drawing file. The source

object's record is physically

placed prior to the target

object's record in the drawing

file. This results in the source

object being drawn prior to the

target object and allows the

target to be drawn on the top of

the source.

MOVE IN FRONT OF allows the user

to reposition an object in the

drawing file. The source

35



object's record is physically
placed after the target object's
record in the drawing file. This
results in the source object
being drawn after the target
object and allows the source to
be drawnon top of the target.

LOGICis a proposedfunction that
allows the user to build dynamic
logic-driven displays from within
RTDB. The proposed method
utilizes a combination of two
existing tools: the Computation-

al Development Environment

(CODE), an RTDS Tool, and the C

Language Integrated Production

System (CLIPS), an expert system

language. Displays have already

been dynamically modified using

CLIPS. The remaining development

requires the integration of CODE

and CLIPS through the graphical

interface of RTDB.

OUTPUT is a proposed function

that allows the user to print the

display image to a laser printer.

CREATE OBJECT is a proposed

function that allows the user to

interactively build a new object.

Primitive drawing objects can be

combined with existing objects

and stored as a new object. The

object attributes will be created.

The new object definition will be

added to RTDB at the Object

Library level.

APPLICATIONS

A tool that embodies the concepts

of graphics, logic, and databases

has a wide area of applicability.

The most obvious being process

monitoring in which a system is

graphically modeled with sensing

and control points highlighted.

This tool would be applicable to

the Space Shuttle, the Space

Station, oil refineries, building

environmental control, computer

integrated manufacturing, etc.

Other uses include simulation,

system testing, and training.

Simulation follows from system

modeling and leads to system

testing. Verification of system

components and/or data sets can

be verified with the use of a

simulation. An extension of

simulations and models is their

use as training tools. What

better way to conduct training

than to let the student build the

system, component by component,

specifying component linkages and

operating parameters.

The evolution of RTDB as a

graphics application builder is

depicted in Figure 3. The RTDB

will act as a conduit through

which utilities will be in-

tegrated into a comprehensive

application. Those utilities

will be an applications developer

providing expert system knowled-

ge, RTIDE providing special

object and symbol definitions,

the RTDS Tool Set providing

system utilities, and CLIPS

providing an expert system

environment. Graphical expert

system applications developed in

this manner can provide a

consistent, controllable

applications interface to RTDS,

its data sources, and flight

controllers.

CONCLUSION

RTDB is an evolving tool, growing

to meet the graphical needs of a

complex environment. As flight

control techniques change and

incorporate more graphical

displays, the need to develop new

displays, convert old displays,

and preserve expert knowledge

will require the development and

use of new tools and techniques.

RTDB represents a step in this

new direction.

ACKNOWLEDGEMENTS

We would like to express our

appreciation to John Muratore and

the entire RTDS Team for

providing a fertile environment

in which new ideas can grow.

36



Also, we would like to thank the

INCO, MMACS, BOOSTER, and EECOM

flight controllers for their

invaluable inputs.

REFERENCES

i. Aldus Corporation, "Tag Image

File Format Specification

Revision 5.0," Aldus Corp.,

Seattle, Washington, and

Microsoft Corp., Redmond,

Washington, August, 1988.

2. Cox, Brad, OBJECT-ORIENTED

PROGRAMMING: AN EVOLUTIONARY

APPROACH, Addison-Wesley,

Reading, Massachusetts, 1986.

3. Hertzel, William, THE COMPLETE

GUIDE TO DOFTWARE TESTING, QED

Information Sciences, Inc.,

Wellesley, Massachusetts.

4. Hopgood, F. R. A., Duce, D.

A., Gallop, J. R., Sutcliffe,

D. C., INTRODUCTION TO THE

GRAPHICAL KERNEL SYSTEM

(GKS), 2nd ed., No. 28,

Harcourt Brace Jovanovich,

London, England, 1986.

5. Jaeschke, Rex, PORTABILITY

AND THE C LANGUAGE, Hayden

Books, Indianapolis, Indiana,

1989.

6. Johnson, Nelson, ADVANCED

GRAPHICS IN C: PROGRAMMING

AND TECHNIQUES, Osbourne

McGraw-Hill, Berkeley,

California, 1987.

7. Jones, Oliver, INTRODUCTION

TO THE X WINDOW SYSTEM,

Prentice Hall, Englewood

Cliffs, New Jersey, 1989.

8. Kalvelage, Thomas, Murray,

Sarah, and Guzzo, Michael,

"Real Time Interactive

Display Environment: Version

0.9 User's Guide," unpublished

memorandum, NASA Johnson

Space Center, Houston, Texas,

October, 1988.

9. Meyer, Bertrand, OBJECT-

ORIENTED SOFTWARE

CONSTRUCTION, Prentice Hall,

New York, New York, 1988.

i0. "MCCU Display Builder/Manager

Level B/C Requirements," No.

JSC-12348, NASA Johnson Space

Center - Mission Support

Directorate, Houston, Texas,

September, 1988.

ii. Miller, Edward, Howden,

William E., TUTORIAL:

SOFTWARE TESTING & VALIDATION

TECHNIQUES, 2nd ed., Computer

Society Press.

12. Muratore, John, et. al.,

"Real Time Expert System

Prototype for Shuttle Mission

Control," Second Annual

Workshop on Space Operations

Automation and Robotics (SOAR

'88), Dayton, Ohio, July,

1988.

13. Riley, Gary, Culbert, Chris,

Savely Robert, and Lopez,

Frank, "CLIPS: An Expert

System Tool for Delivery and

Training, "Third Conference

on Artificial Intelligence

for Space Applications,

Huntsville, Alabama,

November, 1987.

14. Robinson, Phillip, "Power to

the Process," COMPUTER

GRAPHICS WORLD, Vol. 12, No.

3, March, 1989, pp. 71-76.

15. Robinson, Phillip, "CIM's

Missing Link: Object-

Oriented Databases," COMPUTER

GRAPHICS WORLD, Vol. ii, No.

i0, October, 1988, pp. 53-58.

16. Salmon, Rod, and Slater, Mel,

COMPUTER GRAPHICS SYSTEMS AND

CONCEPTS, Addison-Wesley,

Reading, Massachusetts, 1987.

17. Schmucker, Kurt, "Using

Objects to Package User

Interface Functionality,"

JOURNAL OF OBJECT-ORIENTED

PROGRAMMING, Vol. i, No. i,

April, 1988, pp. 40-45.

37



Uaer Mtorfaee ;

Menus :

Prooeaaea :

Object Lbrarino :

Trens_ler:

Gr ephice Linrerh)a:

Command Selection I
with the Mouse and Keyboard

Commend Execution

I Object Definition IPRo formats, aymbo| attributes

Procemo dof n t e01o

Macro filea, Makefne

MASSCOMP Graphics,

X-Windows, ether Hbrarlei

P_lure 1 ° Design Philosophy

Main Menu--

F LEGEND

r ,--Current I
Development I

• -----Prepoaed

Dave opmant

-- File _ Get Drawing

--- Store Drawing

L------ gcanned image*

-- Celor--7_ Select from Map

_ Define Map *

_ gOIOCI Map *

-- Edit _ Modify Attrlbutea

Undo *
Display Invisible

gymbols *
--Add

--Copy

-- Delete

--Move

--Move Behind *

--Move In Front of *

-- Create Object •

--Outpul to Loser Printer *

--Logic •

----Exit

Figure 2 - Functions

j Appii©nUona Reel Time

Intera©tlvo

Display

Dave oper Environment(RTiDE)

System _ Reel Time

Knowledge _ Dlopkly

Bulkier

(RTDB)

i Grephloa/Expor t 8ystem

AppU_ation

Real Time

Dotegystem

(nTDg)

Fiipt

Figure 3 ° RTDB Interface to RTD8

Real Time *Co Language

Data System Intovated

Tools Produotlen

Package System

(KTD$) (CLIPS)

¢ "t"iti_ s

bvkenmont

Data

george

OF POOR QUALJTY

38


